521 research outputs found

    Evaluation of population impact of candidate polymorphisms for coronary heart disease in the Framingham Heart Study Offspring Cohort

    Get PDF
    In order to evaluate the population impact of putative causal genetic variants over the life course of disease, we extended the static estimation of population-attributable risk fraction and developed a novel tool to evaluate how the population impact changes over time using the Framingham Heart Study Offspring Cohort data provided to the Genetic Analysis Workshop 16, Problem 2. A set of population-attributable risk fractions based on survival functions were estimated under the proportional hazards models. The development of this novel measure of population impact creates a more comprehensive estimate of population impact over the life course of disease, which may help us to better understand genetic susceptibility at the population level

    Longitudinal age-dependent effect on systolic blood pressure

    Get PDF
    Age-dependent genetic effects on susceptibility to hypertension have been documented. We present a novel variance-component method for the estimation of age-dependent genetic effects on longitudinal systolic blood pressure using 57,827 Affymetrix single-nucleotide polymorphisms (SNPs) on chromosomes 17-22 genotyped in 2,475 members of the Offspring Cohort of the Framingham Heart Study. We used the likelihood-ratio test statistic to test the main genetic effect, genotype-by-age interaction, and simultaneously, main genetic effect and genotype-by-age interactions (2 degrees of freedom (df) test) for each SNP. Applying Bonferroni correction, three SNPs were significantly associated with longitudinal blood pressure in the analysis of main genetic effects or in combined 2-df analyses. For the associations detected using the simultaneous 2-df test, neither main effects nor genotype-by-age interaction p-values reached genome-wide statistical significance. The value of the 2-df test for screening genetic interaction effects could not be established in this study

    Diversity in EWAS: current state, challenges, and solutions

    Get PDF
    Here, we report a lack of diversity in epigenome-wide association studies (EWAS) and DNA methylation (DNAm) data, discuss current challenges, and propose solutions for EWAS and DNAm research in diverse populations. The strategies we propose include fostering community involvement, new data generation, and cost-effective approaches such as locus-specific analysis and ancestry variable region analysis

    Recent Findings in the Genetics of Blood Pressure and Hypertension Traits

    Get PDF
    We provide an overview of ongoing discovery efforts in the genetics of blood pressure (BP) and hypertension (HTN) traits. Two large genome-wide association meta-analyses of individuals of European descent were recently published, revealing ~13 new loci for BP traits. Only two of these loci harbor genes in a pathway known to affect BP (CYP17A1 and NPPA/NPPB). Functional variants in these loci are still unknown. Few genome-wide association studies (GWAS) of complex diseases have been published from non-European populations. The study of populations with different evolutionary history and linkage disequilibrium (LD) structure, such as individuals of African ancestry, may provide an opportunity to further narrow these regions to identify the causal gene(s). Several collaborative efforts toward discovery of low-frequency variants and copy number variation for BP traits are currently underway. As evidence for new loci for complex diseases accumulates the assessment of the epidemiologic architecture of these variants in populations assumes higher priority. The impact of public health–relevant contexts such as diet, physical activity, psychosocial factors, and aging has not been examined for most common variants associated with BP

    Prospective associations of coronary heart disease loci in African Americans using the MetaboChip: The PAGE study

    Get PDF
    Background Coronary heart disease (CHD) is a leading cause of morbidity and mortality in African Americans. However, there is a paucity of studies assessing genetic determinants of CHD in African Americans. We examined the association of published variants in CHD loci with incident CHD, attempted to fine map these loci, and characterize novel variants influencing CHD risk in African Americans. Methods and Results Up to 8,201 African Americans (including 546 first CHD events) were genotyped using the MetaboChip array in the Atherosclerosis Risk in Communities (ARIC) study and Women\u27s Health Initiative (WHI). We tested associations using Cox proportional hazard models in sex- and study-stratified analyses and combined results using meta-analysis. Among 44 validated CHD loci available in the array, we replicated and fine-mapped the SORT1 locus, and showed same direction of effects as reported in studies of individuals of European ancestry for SNPs in 22 additional published loci. We also identified a SNP achieving array wide significance (MYC: rs2070583, allele frequency 0.02, P = 8.1×10−8), but the association did not replicate in an additional 8,059 African Americans (577 events) from the WHI, HealthABC and GeneSTAR studies, and in a meta-analysis of 5 cohort studies of European ancestry (24,024 individuals including 1,570 cases of MI and 2,406 cases of CHD) from the CHARGE Consortium. Conclusions Our findings suggest that some CHD loci previously identified in individuals of European ancestry may be relevant to incident CHD in African Americans

    Correction: A whole genome association study of mother-to-child transmission of HIV in Malawi

    Get PDF
    A correction to: Bonnie R Joubert, Ethan M Lange, Nora Franceschini, Victor Mwapasa, Kari E North, Steven R Meshnick andthe NIAID Center for HIV/AIDS Vaccine Immunology. A whole genome association study of mother-to-child transmission of HIV in Malawi. Genome Medicine 2010, 2:17

    A whole genome association study of mother-to-child transmission of HIV in Malawi

    Get PDF
    Abstract: Background: More than 300,000 children are newly infected with HIV each year, predominantly through mother-to-child transmission (HIV MTCT). Identification of host genetic traits associated with transmission may more clearly explain the mechanisms of HIV MTCT and further the development of a vaccine to protect infants from infection. Associations between transmission and a selection of genes or single nucleotide polymorphisms (SNP)s may give an incomplete picture of HIV MTCT etiology. Thus, this study employed a genome-wide association approach to identify novel variants associated with HIV MTCT. Methods: We conducted a nested case-control study of HIV MTCT using infants of HIV(+) mothers, drawn from a cohort study of malaria and HIV in pregnancy in Blantyre, Malawi. Whole genome scans (650,000 SNPs genotyped using Illumina genotyping assays) were obtained for each infant. Logistic regression was used to evaluate the association between each SNP and HIV MTCT. Results: Genotype results were available for 100 HIV(+) infants (at birth, 6, or 12 weeks) and 126 HIV(-) infants (at birth, 6, and 12 weeks). We identified 9 SNPs within 6 genes with a P-value <5 × 10-5 associated with the risk of transmission, in either unadjusted or adjusted by maternal HIV viral load analyses. Carriers of the rs8069770 variant allele were associated with a lower risk of HIV MTCT (odds ratio = 0.27, 95% confidence interval = 0.14, 0.51), where rs8069770 is located within HS3ST3A1, a gene involved in heparan sulfate biosynthesis. Interesting associations for SNPs located within or near genes involved in pregnancy and development, innate immunological response, or HIV protein interactions were also observed. Conclusions: This study used a genome-wide approach to identify novel variants associated with the risk of HIV MTCT in order to gain new insights into HIV MTCT etiology. Replication of this work using a larger sample size will help us to differentiate true positive findings

    Low agreement between modified-Schwartz and CKD-EPI eGFR in young adults: a retrospective longitudinal cohort study.

    Get PDF
    Background While there is a great deal of research updating methods for estimating renal function, many of these methods are being developed in either adults with CKD or younger children. Currently, there is limited understanding of the agreement between the modified new bedside Schwartz estimated glomerular filtration rate (eGFR) formula and the adult CKD-EPI formula in adolescents and young adults (AYAs) with chronic kidney disease (CKD) measured longitudinally. Methods Longitudinal cohort study of 242 patients (10-30 years) with CKD, followed retrospectively in a single tertiary centre as they transitioned from the paediatric- to adult-focused settings. The study population came from a longitudinal cohort of AYAs undergoing healthcare transition at the STARx Program at the University of North Carolina, in the South-Eastern USA, from 2006 to 2015. We calculated and compared the eGFR using the new bedside Schwartz formula and the CKD-EPI eGFR. Measurements were repeated for each age in years. Agreement was tested using Bland & Altman analysis. Subgroup analysis was performed using the following age groups 10-15, 15-20, 20-25 and 25-30 years, glomerular and non-glomerular causes of CKD and height z-score. Results Using repeated measures, concordance between the new Schwartz and CKD-EPI eGFR was low at 0.74 (95% C.I. 0.67, 0.79) at the lowest age range of 10-15, 0.78 (95% C.I. 0.71, 0.84) at age 15-20, 0.80 (0.70, 0.87) at ages 20-25, and 0.82 (95% C.I. 0.70, 0.90) at age 25-30. Discordance was worse in males and largest in the 10-15 year-old age group, and in patients with stunted growth. Conclusions The Schwartz and CKD-EPI equations exhibit poor agreement in patients before and during the transition period with CKD-EPI consistently yielding higher eGFRs, especially in males. Further studies are required to determine the appropriate age for switching to the CKD-EPI equation after age 18

    Longitudinal age-dependent effect on systolic blood pressure

    Get PDF
    Abstract Age-dependent genetic effects on susceptibility to hypertension have been documented. We present a novel variance-component method for the estimation of age-dependent genetic effects on longitudinal systolic blood pressure using 57,827 Affymetrix single-nucleotide polymorphisms (SNPs) on chromosomes 17-22 genotyped in 2,475 members of the Offspring Cohort of the Framingham Heart Study. We used the likelihood-ratio test statistic to test the main genetic effect, genotype-by-age interaction, and simultaneously, main genetic effect and genotype-by-age interactions (2 degrees of freedom (df) test) for each SNP. Applying Bonferroni correction, three SNPs were significantly associated with longitudinal blood pressure in the analysis of main genetic effects or in combined 2-df analyses. For the associations detected using the simultaneous 2-df test, neither main effects nor genotype-by-age interaction p-values reached genome-wide statistical significance. The value of the 2-df test for screening genetic interaction effects could not be established in this study
    • …
    corecore